首页> 外文OA文献 >The exponentiated Hencky-logarithmic strain energy. Part III: Coupling with idealized isotropic finite strain plasticity
【2h】

The exponentiated Hencky-logarithmic strain energy. Part III: Coupling with idealized isotropic finite strain plasticity

机译:指数Hencky-对数应变能。第三部分:耦合   具有理想化的各向同性有限应变塑性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We investigate an immediate application in finite strain multiplicativeplasticity of the family of isotropic volumetric-isochoric decoupled strainenergies \begin{align*} F\mapsto W_{_{\rm eH}}(F):=\hat{W}_{_{\rmeH}}(U):=\{\begin{array}{lll} \frac{\mu}{k}\,e^{k\,\|{\rm dev}_n\log{U}\|^2}+\frac{\kappa}{{\text{}}{2\, {\hat{k}}}}\,e^{\hat{k}\,[{\rm tr}(\logU)]^2}&\text{if}& {\rm det}\, F>0,\\ +\infty &\text{if} &{\rm det} F\leq 0,\end{array}.\quad \end{align*} based on the Hencky-logarithmic (true, natural)strain tensor $\log U$. Here, $\mu>0$ is the infinitesimal shear modulus,$\kappa=\frac{2\mu+3\lambda}{3}>0$ is the infinitesimal bulk modulus with$\lambda$ the first Lam\'{e} constant, $k,\hat{k}$ are dimensionless fittingparameters, $F=\nabla \varphi$ is the gradient of deformation, $U=\sqrt{F^T F}$is the right stretch tensor and ${\rm dev}_n\log {U} =\log {U}-\frac{1}{n}\,{\rm tr}(\log {U})\cdot 1\!\!1$ is the deviatoric part of the strain tensor$\log U$. Based on the multiplicative decomposition $F=F_e\, F_p$, we couplethese energies with some isotropic elasto-plastic flow rules $F_p\,\frac{\rmd}{{\rm d} t}[F_p^{-1}]\in-\partial \chi({\rm dev}_3 \Sigma_{e})$ defined inthe plastic distortion $F_p$, where $\partial \chi$ is the subdifferential ofthe indicator function $\chi$ of the convex elastic domain $\mathcal{E}_{\rme}(W_{\rm iso},{\Sigma_{e}},\frac{1}{3}{\boldsymbol{\sigma}}_{\!\mathbf{y}}^2)$in the mixed-variant $\Sigma_{e}$-stress space and $\Sigma_{e}=F_e^T D_{F_e}W_{\rm iso}(F_e)$. While $W_{_{\rm eH}}$ may loose ellipticity, we show thatloss of ellipticity is effectively prevented by the coupling with plasticity,since the ellipticity domain of $W_{_{\rm eH}}$ on the one hand, and theelastic domain in $\Sigma_{e}$-stress space on the other hand, are closelyrelated.
机译:我们研究了各向同性体积-等速解耦应变能\ begin {align *} F \ mapsto W _ {_ {\ rm eH}}(F):= \ hat {W} _ {_ {\ rmeH}}(U):= \ {\ begin {array} {lll} \ frac {\ mu} {k} \,e ^ {k \,\ | {\ rm dev} _n \ log {U} \ | ^ 2} + \ frac {\ kappa} {{\ text {}} {2 \,{\ hat {k}}}} \\,e ^ {\ hat {k} \,[{\ rm tr} (\ logU)] ^ 2}&\ text {if}&{\ rm det} \,F> 0,\\ + \ infty&\ text {if}&{\ rm det} F \ leq 0,\ end {array}。\ quad \ end {align *}基于Hencky对数(真实,自然)应变张量$ \ log U $。此处,$ \ mu> 0 $是无穷小剪切模量,$ \ kappa = \ frac {2 \ mu + 3 \ lambda} {3}> 0 $是无穷小体积模量,其中$ \ lambda $是第一个Lam \' {e}常数,$ k,\ hat {k} $是无量纲的拟合参数,$ F = \ nabla \ varphi $是变形的梯度,$ U = \ sqrt {F ^ TF} $是正确的拉伸张量,$ {\ rm dev} _n \ log {U} = \ log {U}-\ frac {1} {n} \,{\ rm tr}(\ log {U})\ cdot 1 \!\!1 $是应变张量$ \ log U $的偏斜部分。基于乘法分解$ F = F_e \,F_p $,我们将这些能量与各向同性弹塑性流动规则$ F_p \,\ frac {\ rmd} {{\ rm d} t} [F_p ^ {-1} ] \ in- \ partial \ chi({\ rm dev} _3 \ Sigma_ {e})$在塑性变形$ F_p $中定义,其中$ \ partial \ chi $是凸函数的指标函数$ \ chi $的次微分弹性域$ \ mathcal {E} _ {\ rme}(W _ {\ rm iso},{\ Sigma_ {e}},\ frac {1} {3} {\ boldsymbol {\ sigma}} _ {\!\ mathbf {y}} ^ 2)$在混合变量$ \ Sigma_ {e} $应力空间和$ \ Sigma_ {e} = F_e ^ T D_ {F_e} W _ {\ rm iso}(F_e)$中。尽管$ W _ {_ {\ rm eH}} $可能会失去椭圆度,但我们表明,由于与$ W _ {_ {\ rm eH}} $的椭圆率域相结合,有效地防止了椭圆度的损失另一方面,与$ \ Sigma_ {e} $应力空间中的弹性域密切相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号